MultiNNProm: A Multi-Classifier System for Finding Genes
نویسندگان
چکیده
The computational identification of genes in DNA sequences has become an issue of crucial importance due to the large number of DNA molecules being currently sequenced. We present a novel neural network based multi-classifier system, MultiNNProm, for the identification of promoter regions in E.Coli DNA sequences. The DNA sequences were encoded using four different encoding methods and were used to train four different neural networks. The classification results of these neural networks were then aggregated using a variation of the LOP method. The aggregating weights used within the modified LOP aggregating algorithm were obtained through a genetic algorithm. We show that the use of different neural networks, trained on the same set of data, could provide slightly varying results if the data were differently encoded. We also show that the combination of more neural classifiers provides us with better accuracy than the individual networks.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملشناسایی RNA های غیرکدکننده کوتاه عملکردی با استفاده از روش های بیوانفورماتیکی در گوسفند و بز
MicroRNAs (miRNAs) are small non-coding RNAs that have functional roles in post-transcriptional modification. They regulate gene expression by an RNA interfering pathway through cleavage or inhibition of the translation of target mRNA. Numerous miRNAs have been described for their important functions in developmental processes in numerous animals, but there is limited information about sheep an...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملUsing the XCS Classifier System for Multi-objective Reinforcement Learning Problems
We investigate the performance of a learning classifier system in some simple multi-objective, multi-step maze problems, using both random and biased action-selection policies for exploration. Results show that the choice of action-selection policy can significantly affect the performance of the system in such environments. Further, this effect is directly related to population size, and we rel...
متن کاملCondition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier
This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004